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The purpose of the paper is to address the problems of multisensor security system for
concealed weapon detection from the perspective of data fusion.This paper overviews the con-
cealed weapon detection techniques and the state-of-the-art of both signal processing and data
fusion algorithms for concealed weapon detection and identifies how they are incorporated
into the concealed weapon detection application. The discussion clarifies the functionality and
role of data fusion for concealed weapon detection. The expectation for technical advances
is presented as well.

I. Introduction

TERRORIST events lead to an increasing requirement for the enhancement of national homeland defense and
security. In light of new threats, there are needs for improved surveillance and screening systems in airport

facilities, government buildings, transportation security, and many other milieus. The National Institute of Justice
(NIJ) of the U.S. Department of Justice released a guide to the technologies of concealed weapon and contraband
imaging and detection (CWCID) in 2001 [1]. Each technique has its advantages and disadvantages. Each sensor can
be optimized for somewhat different operating range and environmental conditions, and effective combination of
such sensors will extend the capabilities of the individual ones and reduce the false call rate of concealed weapon
detection (CWD). Thus, the appropriate combination of selected techniques can improve the overall performance of
current surveillance system. The technique, namely “data fusion”, can be employed to deal with a hybrid system and
achieve this objective [2].
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Fig. 1 The data format of a CWCID system.

Depending on the specific technique, the information can be acquired in the format of zero-, one-, two-, or
three-dimensional data [1]. Figure 1 illustrates this concept. Although high-dimensional data may provide more
useful information, it increases the computational intensity and complexity while coarse information in a reduced
dimension may be obtained with equipments at a lower cost. With the development of new imaging sensors, such
as infrared (IR) cameras, millimeter wave (MMW) radar, and night-sight cameras; appropriate combination of the
available imaging sensors can generate a composite image with more complete information and detailed content
from the images acquired by multiple image sensors or make a decision with higher reliability. The fusion can be
implemented at the pixel level and higher level. Pixel-level fusion of multisensor images will provide the operator a
comprehensive observation. The output of high-level fusion may help the operator make decisions and judgments.
With the preprocessing algorithms, multiple features extracted from multimodal sensors and the fusion results can
be further used as inputs for the tracking system. The fusion of multisensor images for CWD has attracted more
attention recently. With the current wide use of camera-based security systems, there is an enormous potential market
for applying multiple image modalities for the enhancement of existing surveillance systems.

The interface design of the multisensor system will provide the flexibility to integrate the system into the existing
surveillance network as an independent module and work with other modules cooperatively. Such functionality will
make the multisensor CWD system deliverable to most of the surveillance applications.

The intent of this paper is not to evaluate different fusion algorithms for CWD; it aims at addressing the issues
relevant to the fusion algorithm development and performance assessment. Fusion of the heterogeneous modalities
of sensors or data may provide an efficient solution to many applications but not all. This depends on what techniques
are involved and how to fuse them properly.

The rest of the paper is organized as follows. Currently available CWD techniques are briefly described in Sec II.
The state-of-the-art on data fusion for CWD is reviewed in Sec. III. The relevant issues are discussed in Sec. IV. The
recommendation for future study is provided in Sec. V. The summary of this paper can be found in the last section.

II. CWD: The Techniques
The NIJ’s report provided a brief description of the physics of each CWD technique. We summarize those CWD

techniques in Table 1. There are ongoing efforts to pursue reliable, efficient, low cost, and privacy-protected CWD
techniques.

AKELA developed a portable CWD system based on electromagnetic resonance [3]. The detector employed a
radar to sweep through a range of frequency between 200 MHz to 2 GHz and the signature of the resonant response
was used to identify the size, shape, and physical composition of the object. This is a nonimaging approach and only
zero-dimensional information is available. The ongoing efforts include the design of Terahertz stand-off imager [4].
A performance trade-off study has been carried out by Spore Corp. An ultrasound hand-held detector with LED
indicators was developed [5,6]. However, the performance of the detector needs to be further improved. Another
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Table 1 The techniques for CWD [1]

Physical principles Technical implementation Acquired information Notes

Acoustic reflectivity of
material

Acoustic-based hard object
detector

Object size

Interaction of the time-
varying magnetic
field

Walk-through metal object
detector

Detect presence Electrically conductive or
magnetizable material

Hand-held metal object
detector

Detect presence Used in close-proximity
situations

Magnetic imaging portal Image of the objects Lower spatial resolution
(current 2001)

Interaction with the
magnetic field of the body

Nuclear magnetic resonance
imaging body cavity
imager

Objects hidden deep within
the body

Expensive and high cost for
operating

Changes in local magnetic
field of the earth

Gradiometer metal detector Presence and location of
ferromagnetic object

Subject to false positives
caused by vibration and
movement

Gradiometer metal object
locator

Track and locate
ferromagnetic objects

Can be used to track a close
metal object or in a few
meters way

Interference of two beams
of electromagnetic waves

Microwave holographic
imager

Accurate surface image of a
person

The target must be stationary

Measuring dielectric
constant of materials

Microwave dielectrometer
imager

Surface image of a person Stationary object

Back scattering X-ray imager Detailed anatomical
information

Exist privacy issue

Reflections of the microwave
energy by objects

Microwave radar imager Presence and distance Through-the-wall capability

Measuring the time interval
between pulses and the
resonance of reflecting
objects

Pulse radar/swept frequency
detector/electromagnetic
pulse detector

Electromagnetic signature
for comparison and
judgement

Use the electromagnetic
signature of the object

Measuring reflected energy
of a pulse illuminating
signal

Broadband/terahertz-wave
imager

Distance and size Exists safety issue

Measuring the energy
reflected from objects

MMW radar detector Distance and an image

Detecting the MMW energy
emitted by objects

MMW imager Surface image Stationary object and
weapon-to-body
temperature issue

Measuring the temperature IR imager Surface image Clothing may influence the
result
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effort is to use ultrasonics to generate a lower frequency acoustic wave that is able to penetrate clothing [7]. The
weapon is detected by analyzing the acoustic difference with tissue.

Currently, the study on CWD data fusion mainly focuses on the MMW image and IR image. Because weapons vary
broadly in terms of size and materials, imaging system is the strongest candidate for weapon detection [8]. MMW
imaging is able to detect the passive radiation of objects at longer wavelengths (1–10 mm), because all materials
above absolute zero exhibit black body radiation [9]. The active MMW sensor generates and transmits MMW energy
to illuminate the scene and detects the reflected energy to create an image. The passive MMW sensor detects only the
naturally occurring MMW emissions and reflections from objects in the scene to form an image [10]. The passive
MMW imaging technique can rapidly detect concealed weapons and contraband under clothing [11]. The MMW
sensor should be operated in the regions with better atmospheric transmission. The “Vela 125” from Millivision is
such an imaging system [12]. The active MMW system developed by the Pacific Northwest National Laboratory in
the U.S. can acquire a crisp image in three dimensions by using a linear array of 128 antennas [13,14]. An algorithm
for protecting privacy was developed, where a wire-frame humanoid was presented with threats highlighted [15].

The temperature received by the MMW sensor can be expressed as [16,17]

Trec(ε, μ, θ, α) = RTill + εTobj + tTback (1)

where Trec(ε, μ, θ, α) is the received temperature, Till the temperature of the illumination, Tobj the temperature of the
object and Tback the temperature of the background. The reflectivity R, the emissivity ε, and the transimissivity t are
related as

R + ε + t = 1 (2)

These three coefficients depend on the physical characteristics of materials and geometrical aspects of the scene
defined by the dielectric constant ε, the permeability μ, the angle of incidence θ , the angle between the electric field
and the plane of incidence α, and the polarization p [17]. The report on the advances of MMW-based techniques can
be found in [6,17,18]

IR imaging is similar to MMW imaging in that the signal response is a function of the temperature of the elements
in a scene [9,19]. IR radiation is electromagnetic radiation of a wavelength longer than that of visible light, but shorter
than that of microwave radiation. It is categorized into five groups: 1) near IR (0.75–1.4 μm), 2) short wavelength IR
(1.4–3 μm); 3) mid wavelength IR (3–8 μm); 4) long wavelength IR (8–15 μm); and 5) far IR (15–1000 μm). In [19],
the use of uncooled bolometer array operated in the far-IR band was reported. It is believed that longer wavelength
is more efficacious for detection of weapons. External illumination must be applied due to the rapid reduction in
sensitivity.

III. Fusion for CWD: State-of-the-Art
The CWD has benefited from the development of data fusion techniques. A number of publications have reported

the progresses [20–22]. A tutorial overview of development in imaging sensors and processing was published by
Chen et al. [21] on IEEE Signal Processing Magazine in 2005. This article depicted a general picture for the research
and development of CWD. In this paper, we will focus on the fusion perspective.

A. The Signal Processing Techniques
The CWD images come with background noises and clutter, which directly lower the probability of detection

(POD). Before any further analysis, preprocessing should be applied to tackle this problem. Lee et al. [23] proposed
a method to simultaneously suppress noise and enhance object for passive MMW video sequences. They adopted
undecimated wavelet transform to achieve enhancement via multiscale edge representation. A motion compensated
filtering was applied for temporal denoising. Ramac et al. [24] employed the gray-scale morphologic filtering tech-
nique to remove the clutter and spots in IR and MMW images. The clutter herein refers to the irrelevant details such
as shadows, wrinkles, and artifacts.

Slamani et al. [25] proposed a mapping procedure consisting of three stages. The first stage is threshold compu-
tation, which segments the original image into a number of binary scenes. A low-pass filer and a high-pass filter are
used to group pixels and detect edges for each scene in the second stage. At the third stage, a composite is obtained

199



LIU ET AL.

Fig. 2 The signal processing procedures for CWD: a) Slamani’s procedure [20] and b) Vashney’s procedure [26].

by summing all the processed sub-images together. This procedure actually accomplished a clustering of pixels with
common features and will directly affect the systematic performance.

To identify the procedure of processing CWD data, let us look at the flowchart in Fig. 2. The first one in Fig. 2a
was proposed by Slamani et al. [26]. The authors proposed another one (Fig. 2b) in their recent publications [20,21].
The second procedure is preferred in most cases, because the preprocessing needs to apply before any further analysis
is carried out. The pixel-level image fusion will retain salient features no matter if these features are relevant or not.
Such prominence will be presented in the final fusion result.

Another critical issue should be addressed is image registration. The registration process assures each pixel from
different images corresponds to the same physical point on the object so that the images can be compared or operated
pixel-by-pixel. Chen and Varshney [27] proposed an algorithms to register IR and MMW images. The extracted body
silhouettes are used as control points and the mutual information is to measure the match between the input and
reference. Yasuda et al. [28] used a test chart made of heated wires to calibrate IR and visual camera successfully for
the segmentation of human in a video sequence.

While it would be impossible to discuss all the signal processing techniques for CWD, because the processing
algorithms vary with the detection techniques and applications. We hope to provide a general picture of what have
been achieved in this research field so far from the discussion in this section.

B. The Data Fusion Algorithms
The contributions of data fusion techniques to a CWD application is demonstrated with Fig. 3. The fusion can

be implemented from two aspects: integration and discrimination. In Fig. 3a, the fusion operation can combine
the complementary information from two sensors, e.g., the face and moon. In Fig. 3b, one sensing technique can
discriminate A and B from C while the other technique can separate A and C from B. The fusion operation can fully
discriminate the three components.

Felber et al. [29] implemented a CWD system based on radar and ultrasound sensors. According to the authors
of [29], the idea for fusing these two types of sensors is to have the radar acquire concealed weapon at long ranges
and seamlessly hand over tracking data to the ultrasound sensor for high-resolution imaging on a video monitor.
The frequency-agile radar will achieve a high POD while the active ultrasound sensor array can obtain a centimeter-
resolution image of the weapon at the range of a few meters. However, this paper did not demonstrate how the

200



LIU ET AL.

Fig. 3 Data fusion for CWD: a) integration and b) discrimination.

detection could benefit from both techniques in detail. Experimental results on fusing these two techniques were not
available at the time the paper was published.

It is claimed that the fusion of MMW image and its corresponding IR or electrooptical image can achieve more
complete information [21]. The IR imagers cannot penetrate heavy clothing but operate at reasonably a longer
range whereas MMW sensors have a good penetration at a short range [30]. A visual image does not provide any
information about the concealed weapons. However, the facial pattern of the suspicious may be available. Thus,
the fusion of visual image with other image modalities such as MMW image can provide information of both the
personal identification and concealed weapons. As a result, the concealed weapon can be easily located in the fused
image that is most suitable for human perception.

Most fusion algorithms for CWD are implemented at pixel level with multiresolution analysis (MRA) approaches.
The principle for MRA-based methods is that the image features can be easily accessed and manipulated by repre-
senting the image in the transform domain. The methods vary with the basis functions and fusion rules. An excellent
review of the MRA based pixel-level fusion can be found in reference [22]. Piella’s overview is another good refer-
ence [31]. The fusion procedure is illustrated in Fig. 4. The input images I (x, y) are first represented in the transform
domain, i.e., a sum over a collection of functions gi(x, y)

I (x, y) =
∑

i

yigi(x, y) (3)

Fig. 4 The procedure of MRA-based pixel-level fusion.
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Table 2 The summary of the image fusion techniques for CWD

Image modality Method Achievement Reference

Fusion of two IR
images

Spline wavelet transform and
Burt’s fusion rule [32]

Obtain more complete and
detailed information

Üner et al. [33],
Slamani et al. [34]

Fusion of IR and
MMW images

Facilitate the shape extraction
process

Slamani et al. [26],
Varshney et al. [30]

Fusion of IR and
visual images

Comparison of 15 MRA fusion
algorithms

Retain the fidelity of facial
pattern and highlight the
concealed weapons

Xue et al. [35]

Color-channel fusion Xue et al. [36]

Expectation maximization (EM)
algorithm

Yang et al. [37]

EM and hidden Markov model Yang et al. [38]

Region-based EM algorithm Yang et al. [39]

Image mosaic Liu et al. [40],
Blum et al. [41]

where yi are the transform coefficients and can be obtained by projecting the image onto a set of projection functions,
hi(x, y)

yi =
∑
x,y

hi(x, y)I (x, y) (4)

The fusion rule is applied to yi based on the measurement of image features and characteristics of gi(x, y). After
applying the inverse transform, the fused image is obtained.

For pixel-level fusion, the outcome of the fusion process is also an image, which should be more suitable for
further analysis. The current available fusion techniques for CWD application are summarized in Table 2. The details
will not be repeated herein and readers are referred to the listed references for more information. In the following,
we will discuss the fusion results listed in this table.

Although the authors claimed that the detection performance could be improved by analyzing fused images, there
was a lack of solid evidences to support such claims. There needs a quantitative metric, such as POD that can assess
the fused result in terms of the improved detection performance, when the data from two detection techniques are
fused. For the reliability study, much data needs to be generated to achieve a good POD curve and such study may
raise a cost efficient issue.

While the detection techniques is approaching advanced stage, the privacy protection issue comes into view.
Fortunately, the fusion of visual image and long-wavelength image will take into account this problem. In the results
of [40,41], only the suspect regions for concealed weapons were highlighted in a visual image. An example is given
in Fig. 5. The examples of fusion with MMW image or IR image are shown in Figs. 5a and 5b, respectively. The
detected weapon area is embedded to the visual image with the multiresolution mosaic technique. The detection of
weapon was implemented by unsupervised fuzzy c-means clustering algorithm. The pixel aggregations with highest
intensity value were classified as weapon region.

Therefore, the CWD fusion techniques fall into two categories: one is the fusion for visualization (integration); the
other is the fusion for detection (discrimination). There is a simple rule to identify the difference. When the fusion is
carried out with a visual image input, this is for visualization. Otherwise, the fusion is for detection. However, these
two concepts are not mutual exclusive and the CWD system can also be a hybrid one. The visualization is to show
the detected weapon. If there is no consideration for the detection, the visualization might not be helpful as expected.

IV. Data Fusion for Detection
A. The Reliability of Detection

The terminology “CWD” indicates the most important task, i.e., detection. Therefore, the assessment of the CWD
techniques and fusion algorithms will concentrate on the performance of detection. The reliability of detection for
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Fig. 5 Fusion examples for CWD: a) MMW + visible image and b) IR + visible image (from left to right: visible
image, MMW/IR image, segmented image, and synthesized image) [40].

CWD has not been explicitly addressed and explored so far. In [21], Chen used the plot of POD against probability
of false alarm to assess the performance of different shape descriptors. This plot actually illustrated the relationship
between accuracy and reliability and did not reflect the impacts of physical variables affecting reliability of detection,
such as the size of the concealed weapon, the thickness of the clothing, the stand-off distance, the environment
temperature, human factors and so on. The reliability can be estimated by a POD curve.

The terminology “POD” appears frequently in research literatures of nondestructive evaluation/inspection
(NDE/NDI). It is a measure of the ability of a technique to detect specific defect size of a particular component [42,43].
Continuous POD curves can be estimated from models or experiment or a combination of both. Therefore, properly
using the POD metric can evaluate the CWD techniques or fusion algorithms in a specific situation. The POD curve
is expressed as a plot of the dependence of the POD of a flaw on a characteristic size of the flaw. For an NDI appli-
cation, the inspection results are recorded in either “hit/miss” or “a-hat vs a” formats [44]. Figures 6a and 6b show
the typical “hit/miss” and “a-hat vs a” POD curve, respectively. We may find the corresponding concepts in a CWD
application. As defined in NIJ guide [1], detection gives the operator information on the presence of objects in the
detection space. Such indication consists of the hit/miss results. The characteristic size of concealed weapon can be
the amplitude, area, diameter, aspect ratio, and so on. These characteristics can be derived from the detection results
with processing algorithms. With the POD study, we can understand how the other variables like heavy clothing
influence the POD curves. From now on, we use the terminology “characteristic size (ai)” instead of “crack size” in
the following discussion.

For the hit/miss data, the log-logistic and log-normal models are suggested [46]. According to Berens and
Hovey [47], the log-logistic function is as follows

Pi = exp(α + β ln(ai))

1 + exp(α + β ln(ai))
(5)

where Pi is the POD for concealed weapon i, ai is the characteristic size, α and β are constant parameters defining
the curve. The constants can be estimated with two approaches, i.e. regression analysis and maximum likelihood
estimation (MLE) [43]. The log-normal function is

Pi = 1 − Q(zi) (6)
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Fig. 6 Typical POD chart for NDE applications: a) hit-miss POD curve [44] and a-hat vs a POD curve [45].

where the standard normal variate zi is zi = (ln(ai) − μ/σ), Q(z) is the standard normal survival function, and μ

and σ are the location and scale parameters of the POD curve. Similarly, the MLE method can be applied to find
parameter μ and σ .

Care must be taken when a-hat vs a POD is generated. In this case, a-hat (â) stands for the signal response. As
mentioned before, such response may be represented in different formats, but there is no guarantee that the POD
relation exists. Thus, the characteristic size and signal response should be carefully selected. The “a-hat vs a” POD
function is a cumulative normal distribution function and can be expressed as

POD(a) = �

[
ln a − (ln adec − β0)/β1

δ/β1

]
(7)

where adec is the decision threshold and parameters β0, β1, and δ can be estimated by using the regression analysis
or MLE methods.

Although these concepts are well established in the field of NDE/NDI, the reliability study for CWD has not been
reported so far to the authors’ knowledge. There are a number of variables that contribute to the change of the POD
curve. These factors are condition dependent, i.e., the technique itself and the application environment. The objective
assessment for CWD techniques and algorithms can be implemented with the POD study. A performance model for
each CWD technique should be built. With the established model, the need for fusing multimodal detecting data can
be identified.
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B. A Second Look on Fusion
As described in the previous section, either data fusion or the signal processing algorithms serve for the detection.

As described in Sec. III.B, the fusion is implemented at pixel level. The procedure for the implementation is shown
in Fig. 7a. The fully registered images are fused and then segmented or partitioned to indicate the concealed weapon.
Even if the segmentation is successful, it is still needed to identify which segmented block is the suspect region for
the concealed weapon. No suggestion has been proposed so far.

In [40], Liu et al. proposed a new architecture of signal processing for the CWD application. We demonstrate
this concept with Fig. 7b. In this case, the fusion algorithm is to facilitate the classification process that highlights
the concealed weapon regions. The detection algorithm is based on the physical phenomenon, for example, the
difference in emissivity. Image clustering algorithms like the one described in [48] may act an important role for
this. For each pixel, it can be classified as either a weapon or a background from the measurements. The output
of the classification or detection algorithm is not a binary result (hard decision), e.g., zero or one. It could be a
value between 0 and 1. Therefore, the fusion algorithms at decision level, such as Dempster–Shafer theory, Bayesian
inference, or fuzzy set theory, can be applied. Herein raises another question, i.e., which data source should be given
more preference. This needs the knowledge of running conditions, which may include the environmental parameters
and past performance records. The fusion result is rather explicit and the weapon region can be easily detected by

Fig. 7 The data fusion procedure for CWD: a) pixel-level fusion for CWD and b) decision-level fusion procedure
for CWD.
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applying certain threshold value. The detected weapon region can be further embedded into a visual image. The
benefit of this operation is two-fold. The information from visual image can be integrated and privacy is protected
from voyeurism.

The reliability study will provide another chance to improve the performance of detection through fusion operation.
For each individual detection method, if the POD result is available and we know how the environmental variable
influence the curve, we can tune the fusion parameters to give preference to one information source in a specific
condition. The implementation of such mechanisms remains a topic for future research.

C. The Human Factor Issue
There will be several human factors issues associated with the CWD application. The visual imagery presented

by the CWD will be different from everyday visual displays. That is, the imagery will not appear exactly in the same
colors, contrast and details we normally associate with other display systems and natural visual image conditions. As
a consequence, this imagery may affect the human users capacity to detect and recognize objects. Thus, there will be
a visible impact on the user and this will affect their performance in relevant tasks such as identifying weapons and
related materials. Although there will likely be a myriad of perceptual effects using the CWD, according to Klock
the primary issues to be considered initially include [49]:

• Usability: the ease with which the human user can interface with hardware and software in the CWD system;
• Training: timeliness to use the system well and interpret imagery;
• Efficiency and system effectiveness: how rapidly can the imagery be interpreted and how accurate is detection

and recognition of objects.
There are several other human factors considerations in the development of the CWD. Changing the device

characteristics and will have a direct impact on POD and the human user POD curves. It is important to note, that
the POD curves for the engineering characteristics will have to be validated against human user PODs. It will be
necessary to review the optimal display characteristics (e.g., hardware and software) to best enhance performance in
the general four areas described above. This use of sensors in security applications is a relatively new application and
will require domain expertise from several areas including, physics, engineering, psychology, and law enforcement
professionals.

V. What Is the Next?
The other consideration is how to integrate the multisensor CWD system to work with the existing surveillance

system. Besides the implementation of the CWD functions, the multisensor system can also provide complementary
information for the task of identifying or tracking in the surveillance process as well. This will enhance the surveillance
to be more adaptive to the variations of the environment. However, the potential attacks include a wide variety of
chemical, biological, radiological, or nuclear (CBRN) weapons [50]. Therefore, the weapon detection will not be
limited to the techniques mentioned in Sec. IV. What is the next beyond CWD?

The national security networks will employ tens of thousands of sensors for detecting weapons, monitoring
and protecting critical infrastructures [51]. In order to share sensor data and information, both the sensor interface
and data format need to be standardized. The network should be capable of web-based discovery, access, control,
analysis, management, and visualization of connected sensors, sensor-derived data repositories, and sensor-related
processing capabilities [51]. The opened network should be able to interconnect the sensors seamlessly. IEEE 1451
is such an interface standard for smart transducers.∗∗ The goal is to achieve sensor-to-network plug-and-play and
interoperability [51]. The sensor information provides the basis for risk management of homeland security, e.g.,
estimating the likelihood of threat to an asset, individual, or function. At this level, a more general term “information
fusion” is more suitable.

VI. Summary
The core of CWD is the capacity to detect and recognize weapons. The CWD sensor and display system must

have the capacity to separate the weapons from other objects and items. There are defined homogeneous featural

∗∗ http://ieee1451.nist.gov/
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characteristics of pixels such as intensity that could be used. Segmentation of imagery, clustering, and thresholding
techniques will contribute to this process.

Although CWD is in its infancy, this application may benefit from the fusion of multiple sensors and detection
modalities. The data available suggest that pixel-level image fusion can facilitate the segmentation process and
ultimate detection of weapons from other objects. There seems to be an obvious advantage to fusing the partitioned
results at the decision level and this remains a topic for future investigation.

The quantitative assessment of CWD techniques and fusion algorithms has not been fully explored. A reliability
study can provide an objective evaluation of the performance of a CWD system. There is currently no report that
describes a comparison study of different CWD systems. It will be necessary to investigate the variables that influence
the POD in real operational scenarios. These studies should address engineered device characteristics and human
performance limits. This paper is to highlight and emphasize these issues contributing to the performance of a CWD
system. The CWD functionality should be integrated as one part of a nation wide risk management system.
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